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Abstract

A nonlinear stochastic optimal (NSO) control strategy for wave-excited jacket-type offshore platforms is proposed.

Wave force is determined according to linearized Morison equation. Spectral density functions of water particle velocity

and acceleration are approximated by some rational forms, respectively. Wave force vector is then treated as output of a

linear filter driven by white noise. A set of partially averaged Itô equations for controlled modal energies are derived by

applying stochastic averaging method for quasi-integrable Hamiltonian systems. Optimal control law is then determined

by using stochastic dynamical programming principle. To demonstrate the effectiveness and efficiency of the proposed

control strategy, performances of uncontrolled, linear quadratic Gaussian (LQG)-controlled and NSO-controlled example

platforms under different sea states are evaluated. Numerical results show that the NSO controller has better control

effectiveness and efficiency than the LQG controller.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Active control of civil engineering structures has been investigated for more than twenty years [1]. Many
control strategies and control devices have been proposed for active control of civil engineering structures.
However, most studies care about structures excited by wind and earthquakes and only a few studies concern
wave-excited offshore structures [2–8]. Active control of wave-excited offshore platforms has not been
appropriately investigated. As platform moves far and far into deep water, extreme wave in deep water can
induce large motion of offshore platform, which can threaten safety and operation of platform. To prevent
fatigue damage and to protect operation and crew of platform, more attention should be paid to active control
of wave-excited offshore structures.

Since dynamic loading such as earthquake, wind and wave are usually modeled as random processes, to
apply stochastic optimal control theory to civil engineering structures is natural and reasonable. Recently,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamical
programming principle, a nonlinear stochastic optimal control strategy was proposed by the present second
author and his co-workers [9,10]. It has been applied to the control of buildings structures under wind and
earthquake excitation, and proved to be more effective and efficient than linear quadratic Gaussian (LQG)
control strategy [10,11]. The present paper is devoted to the application of the nonlinear stochastic optimal
control strategy to wave-excited offshore structures. Although the basic control strategy is the same, the
structures and loadings are different here and in Refs. [10,11]. So, the control effectiveness and efficiency are
different. Besides, the control system here is assumed to be completely observable rather than partially
observable as in Refs. [10,11].

To apply the nonlinear stochastic optimal strategy to wave-excited offshore structures, it is necessary to
establish a set of stochastic differential equations for random wave loading, which is usually characterized by
power spectral density function. An filter approaches to wave kinematics was presented [12], extended and
used for active control of offshore platform subject to wave loading using H2 controller [13]. Here this
filter approach is used in the active control of offshore platform subject to wave loading using the nonlinear
control strategy.

2. Model of wave load

It is assumed that wave surface elevation Z(t) is a zero-mean, stationary, Gaussian random process,
characterized by its spectral density function SZ(o). One of the most commonly used spectral density function
of wave surface elevation is JONSWAP spectral density [14]

SZðoÞ ¼
5H2

s

16o0

� �
ðo=o0Þ

�5 exp �
5

4
ðo=o0Þ

�4

� �
gb, (1)

where Hs is significant wave height; o0 is dominant (peak) wave frequency, g is sharpness magnification factor

b ¼ exp �ðo� o0Þ
2=2t2o2

0

� �
(2)

in which t ¼ 0.07 for oro0 and t ¼ 0.09 for oZo0.
In order to obtain a rational form for the spectral density function of wave force, the following approximate

JONSWAP spectral density is taken [12]
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Gðo=o0Þ

4
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where the parameters G,k1,k2,c1,c2, are determined by using a least-squares algorithm.
Following the linear wave theory, the spectral density function of horizontal water-particle velocity u̇ at

level z is

S _u _uðo; zÞ ¼ H _uZðo; zÞ
�� ��2SZðoÞ ¼ o2 cosh

2
ðkzÞ

sinh2ðkdÞ
SZðoÞ, (4)

where Hu̇Z(o,z) is the frequency response function for transformation from wave surface elevation to
horizontal water-particle velocity at level z; k ¼ o2/g is wave number, g is the gravity acceleration. The
spectral density function of horizontal water-particle acceleration ü at level z is

S €u €uðo; zÞ ¼ o2S _u _uðo; zÞ. (5)

The frequency response function in Eq. (4) can be expanded as [13]

H _uZðo; zÞ
�� ��2 ¼ o2 cosh

2 kzð Þ

sinh2 kdð Þ
¼ o2 1þ 1

2
kzð Þ2 þ 1

24
kzð Þ4 þ 1

720
kzð Þ6 þ � � �

1þ 1
6 kdð Þ3 þ 1

120 kdð Þ5 þ 1
5040 kdð Þ7 þ � � �

, (6)

where d is the water depth at structural site. Keeping the first two terms of Fourier expansions of
numerator and denominator, respectively, of |Hu̇Z(o,z)|2 in Eq. (6) and substituting k ¼ o2/g into Eq. (6),
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one obtains

H _uZðo; zÞ
�� ��2 � z2

2g2
o6 þ o2

� ��
1þ

d3

6g3
o6

� �
: (7)

Thus, the approximate spectral density function of horizontal water-particle velocity is

S _u _uðo; zÞ ¼

3Ggz2o4
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and the approximate spectral density function of horizontal water-particle acceleration is
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Similarly, the approximate cross-spectral density function of horizontal water-particle velocity is
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and the approximate cross-spectral density function of horizontal water-particle acceleration is
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According to the Morison equation, wave force acting on the structure at level z is of the form

F ðz; tÞ ¼ kD _uj _uj þ kM €u, (12)

where

kD ¼ ð1=2ÞrCDAp; kM ¼ rCMV p (13)

in which r is density of seawater, CD and CM are drag and inertia coefficients, respectively, and Ap and Vp

are projected area and volume of structure at level z, respectively. The linearized Morison equation is of the
form [14]

F ðz; tÞ ¼
ffiffiffiffiffiffiffiffi
8=p

p
kDs _u _uþ kM €u, (14)

where su̇ ¼ su̇(z) is the standard deviation of horizontal water-particle velocity at level z. Then the cross-
spectral density of the approximate wave forces acting on the structure at zm and zn is

SF ðo; zm; znÞ ¼ kMðzmÞkM ðznÞS €u €uðo; zm; znÞ þ
8

p
kDðzmÞkDðznÞs _um

s _un
S _u _uðo; zm; znÞ, (15)

where S €u €uðo; zm; znÞ and S _u _uðo; zm; znÞ are the cross-spectral densities of horizontal water-particle velocity and
acceleration.

Suppose that the offshore structure is simplified as a lumped mass system with N lumped masses. The N-
dimensional wave force vector F(t), where FðtÞ ¼ ½FN ðtÞ;F N�1ðtÞ; � � � ;F 1ðtÞ�

T, acting on N lumped mass with
spectral density matrix S(o) obtaining from discreting Eq. (15) can be modeled as the output of the following
linear filter with a unit intensity Gaussian white noise process w(t) as an input

FðtÞ ¼ Cf y; _y ¼ Af yþ Bf wðtÞ, (16)
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where
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where diag denotes diagonal matrix. Note that, since the highest power of o in the denominator of
approximate rational spectral density function of linearized wave force is 14, the dimension of matrix Af

is 7� 7.

3. Equation of controlled system

The simplified controlled system equation is of the form

M €Xþ C _Xþ KX ¼ FðtÞ þ PU; Xð0Þ ¼ X0, (19)

where X; _X; €X are N-dimensional vectors of structural displacements, velocities and accelerations,
respectively.M,C and K are mass, damping and stiffness matrices of the system, respectively;
U ¼ [U1,U2,y,Um]

T is m-dimensional vector of control forces produced by m control devices; P is N�m

control device placement matrix. Introduce model transform

X ¼ UQ, (20)

where Q ¼ ½Q1;Q2; � � � ;Qn�
T is the dominant modal displacement vector, and U is a N� n dominant modal

matrix consist of n dominant modal vectors. The equation for the n dominating modes can be written as

€Qþ 2fX _QþX2Q ¼ UTFðtÞ þUTPU; Qð0Þ ¼ Q0, (21)

where 2fX ¼ UTCU;X2
¼ diagðo2

i Þ ¼ UTKU. oi and zi are the frequency and damping coefficient of the ith
mode, respectively.



ARTICLE IN PRESS
M. Luo, W.Q. Zhu / Journal of Sound and Vibration 296 (2006) 734–745738
Eqs. (16) and (21) can be combined and converted into the following Itô stochastic differential equation

dZ ¼ ðAZþ BUÞ þ Cd ~BðtÞ; Zð0Þ ¼ Z0, (22)

where Z ¼ [QT,Q̇T,yT,ẏT]T; ~BðtÞ is a standard Wiener process, Z0 is a Gaussian random vector representing the
initial state of the system, which is independent of ~BðtÞ,

A ¼

0 I 0 0

�X2
�2fX Cf 0

0 0 Af 0

2
64

3
75; B ¼

0

UTP

0

0

2
6664

3
7775; C ¼

0

0

Bf

0

2
6664

3
7775. (23)

4. Stochastic averaging

To simplify the equation of controlled system and reduce its dimension, the stochastic averaging method for
quasi-integrable Hamiltonian system [15] is applied to the equations forQ and Q̇ in Eq. (22) except the control
force terms. Then the obtained partially averaged Itô stochastic differential equations for the n dominant
modal energies are

dHi ¼ miðHiÞ þoðqHi=q _QiÞF
T
ikPkrUr4

� �
dtþ siðHiÞdB̄iðtÞ; i ¼ 1; 2; :::; n, (24)

where o �4 denotes averaging operation with respect to time t;

Hi ¼ ð _Q
2

i þ o2
i Q2

i Þ=2; i ¼ 1; 2; :::; n (25)

denotes the energy of the ith mode; B̄iðtÞ are standard Wiener processes;

miðHiÞ ¼ � 2zioiHi þ FT
ilFkiSlkðoiÞ,

s2i ðHiÞ ¼ 2HiFT
ilFkiSlkðoiÞ; ð26Þ

SlkðoiÞ ¼ SFl Fk
ðoiÞis the l, kth element of spectral density matrix S(o) evaluated at oi.

5. Optimal control law

Eq. (24) implies that Hi are controlled diffusion processes. The objective of stochastic optimal control is to
seek the optimal feedback control U* for minimizing the following semi-infinite time-interval performance
index

JðUÞ ¼ lim
tf!1

1

tf

Z tf

0

LðHðtÞ;oUðtÞ4Þdt, (27)

where L(H(t),oU(t)4) is the so-called cost function. Based on the stochastic dynamical programming
principle, the following dynamical programming equation can be established [9]

l ¼ min
U

LðHðtÞ;oUðtÞ4Þ þ
qV

qH

� �T

mðHÞ þo
qH

q _Q
UTPU4

� �
þ

1

2
tr

q2V

qH2
rðHÞrTðHÞ

� �( )
, (28)

where

l ¼ lim
tf!1

1

tf

Z tf

0

LðHðtÞ;oU�ðtÞ4½ �dt (29)

is the optimal average cost, V is the value function and U* is the optimal control force vector.
The expression for U* can be obtained from minimizing the right-hand side of Eq. (28) with respect to U.

Suppose that the cost function L is of the form

L ¼ gðHÞ þoUTRU4, (30)
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where R is a n� n positive-define matrix. Then U* is of the following form:

U� ¼ �
1

2
R�1PTUðqH=q _QÞTðqV=qHÞ (31)

Substituting Eq. (31) into Eq. (28) and completing averaging Q and Q̇ with respective to t yield the final
dynamical programming equation for semi-infinite time-interval control problem

l ¼ gðHÞ þ
Xn

i¼1

miðHiÞ
qV

qHi

�
1

4
DiiHi

qV

qHi

� �2

þ
1

2
s2i ðHiÞ

q2V

qH2
i

" #
, (32)

where Dii ¼ ½U
TPR�1PTU�ii:

qV/qH can be obtained by solving the final dynamical programming equation (32) and the optimal control
U* can be obtained by substituting the resultant qV/qH into the Eq. (31).

6. Response prediction of controlled structure

AveragingðqHi=qQiÞF
T
ikPkrU

�
r Þ and then substituting it into equation (24) to replace ðqHi=q _QiÞF

T
ikPkrUr,

one obtains the completely averaged Itô equation for Hi

dHi ¼ miðHiÞ þm
ðUÞ
i ðHiÞ

h i
dtþ siðHiÞdB̄iðtÞ, (33)

where

m
ðUÞ
i ðHiÞ ¼ �

1

2
FT

ikPkrR
�1
rs PT

slFliHi
qV

qHi

. (34)

The stationary probability density p(H) can be obtained from solving the reduced Fokker-plank-kolmogorov
(FPK) equation associated with Itô Eq. (33). It is of the following form

pðHÞ ¼ C0 exp �

Z H

0

Xn

i¼1

Di þ Ei

qV

qHi

� �
dHi

� �( )
, (35)

where C0 is a normalization constant,

Di ¼ 4zioi=FT
ilFkiSlkðoiÞ,

Ei ¼ FT
ikPkrR

�1
rs PT

sjFji=FT
ilFkiSlkðoiÞ. ð36Þ

The stationary probability density of the modal displacement and velocity of the controlled structure is
then [15]

pðQ; _QÞ ¼ ½pðHÞ=TðHÞ�
��
Hi¼ð _Q

2

i þo2Q2
i Þ=2

, (37)

where

TðHÞ ¼
Yn

i¼1

I
dQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi � o2
i Q2

i

q ¼
Yn

i¼1

2p
oi

� �
. (38)

The mean square values of the modal displacement and velocity of the controlled structure are

E Q2
i

� �
¼

Z 1
�1

Q2
i pðQ; _QÞdQd _Q ¼

1

o2
i

Z 1
0

HipðHÞdH,

E _Q
2

i

h i
¼

Z 1
�1

_Q
2

i pðQ; _QÞdQd _Q ¼

Z 1
0

HipðHÞdH. ð39Þ
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Finally, the mean square displacement and acceleration of each floor are obtained from Eq. (39) by using
modal transformation (20) as follows:

E X 2
i

� �
¼ E

Xn

j¼1

FijQj

 !2
2
4

3
5,

E €X
2

i

h i
¼ E

Xn

j¼1

Fij o2
j Qj þ 2zioi

_Qj � UTFðtÞ þUTPU
� �	 
�

j

 !2
2
4

3
5. ð40Þ

The response statistics of the uncontrolled structure can be obtained in a similar way by letting control force
vanish.
7. Performance criteria

The main purpose of vibration control of wave-excited offshore platforms is to reduce displacement to
prevent fatigue damage, and to reduce deck acceleration to protect operations and crew of offshore platforms.
So, to evaluate a control strategy, the control effectiveness and efficiency of the displacements and deck
acceleration are considered. Control effectiveness is defined as [9]

K ¼ ðsu � scÞ=su, (41)

where s stands for the standard deviation of displacement or deck acceleration; subscripts u and c denote
uncontrolled and controlled offshore platforms, respectively. Control efficiency is defined as

m ¼ K=sF , (42)

where sF ¼
Pm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E U�2i

� �q
= ~G is the standard deviation of control force, normalized by total weight ~G

of offshore platform. It is seen from the definitions that the larger K and m are, the better the control
strategy is.
Z

Z7=144.78m

Z6=118.87m

Z5=99.06

Z4=79.06

Z3=59.44

Z2=39.62

Z1=19.81

d=121.92m

Fig. 1. Model of jacket-type offshore platform used for numerical example.
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8. Numerical example

A simplified jacket-type platform with 7 lumped masses is taken as an example (see Fig. 1). The height of the
platform is 144.78m. The mass, stiffness and damping matrices are

M ¼ diagf 4818 1475 1302 1533 1840 2205 3738 g � 103 kg;

K ¼

344 �289 17 �1 26 4 16

670 �366 4 �33 23 �10

725 �368 14 �22 9

777 �410 23 �23

879 491 56
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Fig. 2. (a) STD displacements of uncontrolled, NSO- and LQG-controlled offshore platforms; (b) control effectiveness and (c) control

efficiency of NSO and LQG control strategies. T ¼ 1:5 s, R ¼ 10�7I7, s1 ¼ ½1; 1; 1; 1; 1; 1; 1�
T for NSO and Rl ¼ 1, Ql ¼ 10�7I14 for LQG.
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C ¼

2522 �1244 �263 �135 9 18 �59

2892 �936 �188 �144 7 �30

�2808 �920 �161 �106 �22

3142 �1072 �161 �113

3652 �1292 �122

sym 4311 �1605

6769

2
666666666664

3
777777777775
� 103 N s=m:

(43)

The natural frequencies of this platform are 0.7432, 1.2497, 2.1678, 2.9563, 3.6921, 4.3649, 4.9773 (Hz), and
the modal damping ratios are 5% for all modes.

The water depth d is 121.92m. The vertical coordinates of lumped masses are

z ¼ z7; z6; � � � ; z1½ �T ¼ 144:78; 118:87; 99:06; 79:06; 59:44; 39:62; 19:81½ �T m; (44)

the drag coefficient matrix is

kD ¼ diag 0; 790; 676; 719; 757; 828; 1557f g � 103 kg=m; (45)
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Fig. 3. (a) STD displacements of uncontrolled, NSO- and LQG-controlled offshore platforms; (b) control effectiveness and (c) control

efficiency of NSO and LQG control strategies. T ¼ 2:5 s, R ¼ 10�7I7, s1 ¼ ½1; 1; 1; 1; 1; 1; 1�
Tfor NSO and Rl ¼ 1, Ql ¼ 10�7I14 for LQG.
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and the inertia coefficient matrix is

kM ¼ diag 0; 1744; 1674; 1939; 2563; 3150; 6735f g � 103 kg: (46)

A JONSWAP spectrum with significant wave height Hs ¼ 10m, sharpness magnification factor g ¼ 3.0 and
periods T ¼ 1.5, 2.5, 3.5 (s) is used to characterize the sea states. The parameters for the approximate
JONSWAP spectrum are G ¼ 23.72, c1 ¼ 0.2, c2 ¼ 2.32, k1 ¼ 0.97 and k2 ¼ 0.44.

It is difficult to obtain the exactly analytical solution to Eq. (32). However, it is possible to obtain its
approximately analytical solution. For example, if

gðHÞ ¼ s0 þ
X7
i¼1

Hiðs1i þ s2iHi þ s3iH
2
i Þ þ

X7
i;j¼1;iaj

sbijHiHj þ 0ðHiHjHkÞ (47)

then a polynomial solution

V ð ^̄HÞ ¼
X7
i¼1

Ĥiðp1i þ p2iĤiÞ þ
X7

i;j¼1;iaj

pbijĤiĤj (48)
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Fig. 4. (a) STD displacements of uncontrolled, NSO- and LQG-controlled offshore platforms; (b) control effectiveness and (c) control

efficiency of NSO and LQG control strategies. T ¼ 3:5 s, R ¼ 10�7I7, s1 ¼ ½1; 1; 1; 1; 1; 1; 1�
Tfor NSO and Rl ¼ 1, Ql ¼ 10�7I14 for LQG.
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Table 1

Standard deviation of deck acceleration and control force

Sea states STD deck acceleration sa (m2/s) Control effectiveness K (%) Control efficiency m

Uncontrolled NSO LQG NSO LQG NSO LQG

T ¼ 1.5 2.8004 1.2287 1.7941 56.12 35.93 36.10 23.11

T ¼ 2.5 1.1950 0.5802 0.7999 51.45 33.06 67.68 43.49

T ¼ 3.5 0.7285 0.3442 0.4839 52.75 33.58 110.14 70.11

M. Luo, W.Q. Zhu / Journal of Sound and Vibration 296 (2006) 734–745744
to Eq. (32) may be obtained. Note that only some coefficients in Eq. (47) can be predetermined. The other
coefficients in Eq. (47) and the coefficients in Eq. (48) can be determined by substituting them into dynamical
programming Eq. (32).

Numerical results by using LQG control strategy are also obtained. Rewriting system Eq. (21) as system
state equation

_ZðtÞ ¼ AlZðtÞ þ BlUþ ClF, (49)

where ZðtÞ ¼ ½QT; _Q
T
�T;

Al ¼
0 I

�X2
�2fX

" #
; Bl ¼

0

UTP

� �
; Cl ¼

0

UT

� �
. (50)

Let the cost function L(Z, U) be

LðZ;UÞ ¼ ZTQlZþUTRlU, (51)

where Ql is a semi-definite symmetric matrix and Rl is a positive-definite symmetric matrix. In the case of semi-
infinite time-interval control with performance index

Jl ¼ lim
T!1

1

T

Z T

0

LðZ;UÞdt (52)

the optimal control force can be determined easily [10].
The active control device is installed on the top floor. Numerical results of STD displacement responses

of uncontrolled, LQG- and NSO-controlled offshore platforms for three different sea states are shown in
Figs. 2–4. Numerical results of STD deck acceleration responses are listed in Table 1. It can be seen from these
numerical results that the control effectiveness and efficiency of the proposed NSO control strategy are greater
than those of LQG control strategy.
9. Conclusions

In this paper a nonlinear stochastic optimal (NSO) control strategy has been proposed for offshore platform
subject to wave loading. The proposed control strategy has several advantages. By using the stochastic
averaging, the dimension of control system is reduced to a half of that of the original controlled system, and
thus the dimension of dynamical programming equation is also reduced by a half. Numerical results for an
example offshore platform subject to three different sea states shows that the proposed control strategy is
more effective and efficient than LQG control strategy. Note that this is the primary study on the application
of the nonlinear stochastic strategy on wave-excited offshore structures. The more practical study considering
all details including measuring and estimating system state will be conducted in future.
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